大数据与海量数据的区别
网上有关“大数据与海量数据的区别”话题很是火热,小编也是针对大数据与海量数据的区别寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
大数据与海量数据的区别
如果仅仅是海量的结构性数据,那么解决的办法就比较的单一,用户通过购买更多的存储设备,提高存储设备的效率等解决此类问题。然而,当人们发现数据库中的数据可以分为三种类型:结构性数据、非结构性数据以及半结构性数据等复杂情况时,问题似乎就没有那么简单了。
大数据汹涌来袭
当类型复杂的数据汹涌袭来,那么对于用户IT系统的冲击又会是另外一种处理方式。很多业内专家和第三方调查机构通过一些市场调查数据发现,大数据时代即将到来。有调查发现,这些复杂数据中有85%的数据属于广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据的产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。
如今大数据的概念也存在着很多的炒作和大量的不确定性。为此,编者详细向一些业内专家详细了解有关方面的问题,请他们谈一谈,大数据是什么和不是什么,以及如何应对大数据等问题,将系列文章的形式与网友见面。
有人将多TB数据集也称作”大数据”。据市场研究公司IDC统计,数据使用预计将增长44倍,全球数据使用量将达到大约35.2ZB(1ZB = 10亿TB)。然而,单个数据集的文件尺寸也将增加,导致对更大处理能力的需求以便分析和理解这些数据集。
EMC曾经表示,它的1000多个客户在其阵列中使用1PB(千兆兆)以上的数据数据,这个数字到2020年将增长到10万。一些客户在一两年内还将开始使用数千倍多的数据,1EB(1艾字节 = 10亿GB)或者更多的数据。
对大企业而言,大数据的兴起部分是因为计算能力可用更低的成本获得,且各类系统如今已能够执行多任务处理。其次,内存的成本也在直线下降,企业可以在内存中处理比以往更多的数据,另外是把计算机聚合成服务器集群越来越简单。IDC认为,这三大因素的结合便催生了大数据。同时,IDC还表示,某项技术要想成为大数据技术,首先必须是成本可承受的,其次是必须满足IBM所描述的三个”V”判据中的两个:多样性(variety)、体量(volume)和速度(velocity)。
多样性是指,数据应包含结构化的和非结构化的数据。
体量是指聚合在一起供分析的数据量必须是非常庞大的。
而速度则是指数据处理的速度必须很快。
大数据”并非总是说有数百个TB才算得上。根据实际使用情况,有时候数百个GB的数据也可称为大数据,这主要要看它的第三个维度,也就是速度或者时间维度。
Garter表示,全球信息量正在以59%以上的年增长率增长,而量是在管理数据、业务方面的显著挑战,IT领袖必须侧重在信息量、种类和速度上。
量:企业系统内部的数据量的增加是由交易量、其它传统数据类型和新的数据类型引发的。过多的量是一个存储的问题,但过多的数据也是一个大量分析的问题。
种类:IT领袖在将大量的交易信息转化为决策上一直存在困扰 – 现在有更多类型的信息需要分析 – 主要来自社交媒体和移动(情景感知)。种类包括表格数据(数据库)、分层数据、文件、电子邮件、计量数据、视频、静态图像、音频、股票行情数据、金融交易和其它更多种类。
速度:这涉及到数据流、结构化记录的创建,以及访问和交付的可用性。速度意味着正在被生成的数据有多快和数据必须被多快地处理以满足需求。
虽然大数据是一个重大问题,Gartner分析师表示,真正的问题是让大数据更有意义,在大数据里面寻找模式帮助组织机构做出更好的商业决策。
诸子百家谈如何定义”大数据”
尽管”Big Data”可以翻译成大数据或者海量数据,但大数据和海量数据是有区别的。
定义一:大数据 = 海量数据 + 复杂类型的数据
Informatica中国区首席产品顾问但彬认为:”大数据”包含了”海量数据”的含义,而且在内容上超越了海量数据,简而言之,”大数据”是”海量数据”+复杂类型的数据。
但彬进一步指出:大数据包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。
大数据是由三项主要技术趋势汇聚组成:
海量交易数据:在从 ERP应用程序到数据仓库应用程序的在线交易处理(OLTP)与分析系统中,传统的关系数据以及非结构化和半结构化信息仍在继续增长。随着企业将更多的数据和业务流程移向公共和私有云,这一局面变得更加复杂。海量交互数据:这一新生力量由源于 Facebook、Twitter、linkedIn 及其它来源的社交媒体数据构成。它包括了呼叫详细记录(CDR)、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输(Manage File Transfer)协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。海量数据处理:大数据的涌现已经催生出了设计用于数据密集型处理的架构,例如具有开放源码、在商品硬件群中运行的 Apache Hadoop。对于企业来说,难题在于以具备成本效益的方式快速可靠地从 Hadoop 中存取数据。定义二:大数据包括A、B、C三个要素
如何理解大数据?NetApp 大中华区总经理陈文认为,大数据意味着通过更快获取信息来使做事情的方式变得与众不同,并因此实现突破。大数据被定义为大量数据(通常是非结构化的),它要求我们重新思考如何存储、管理和恢复数据。那么,多大才算大呢?考虑这个问题的一种方式就是,它是如此之大,以至于我们今天所使用的任何工具都无法处理它,因此,如何消化数据并把它转化成有价值的洞见和信息,这其中的关键就是转变。
基于从客户那里了解的工作负载要求,?NetApp所理解的大数据包括A、B、C三个要素:分析(Analytic),带宽(Bandwidth)和内容(Content)。
1. 大分析(Big Analytics),帮助获得洞见 – 指的是对巨大数据集进行实时分析的要求,它能带来新的业务模式,更好的客户服务,并实现更好的结果。
2. 高带宽(Big Bandwidth),帮助走得更快 – 指的是处理极端高速的关键数据的要求。它支持快速有效地消化和处理大型数据集。
3. 大内容(Big Content),不丢失任何信息- 指的是对于安全性要求极高的高可扩展的数据存储,并能够轻松实现恢复。它支持可管理的信息内容存储库、而不只是存放过久的数据,并且能够跨越不同的大陆板块。
大数据是一股突破性的经济和技术力量,它为 IT 支持引入了新的基础架构。大数据解决方案消除了传统的计算和存储的局限。借助于不断增长的私密和公开数据,一种划时代的新商业模式正在兴起,它有望为大数据客户带来新的实质性的收入增长点以及富于竞争力的优势。
以上是小编为大家分享的关于大数据与海量数据的区别的相关内容,更多信息可以关注环球青藤分享更多干货
什么是大数据,看完这篇就明白了
大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
什么是大数据
如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。
大数据的特点
海量化
这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。
MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。
1MB可储存1024×1024=1048576字节(Byte)。
字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。
位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。
通俗来讲,1MB约等于一张网络通用(非高清)的大小。
1GB=1024MB,约等于下载一部**(非高清)的大小。
1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。
1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。
1EB=1024PB,目前还没有单个存储器达到这个容量。
多样化
大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。
①结构化数据
结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。
但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
②半结构化数据
半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。
③非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。
快速化
随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。
核心价值
大数据的核心价值,从业务角度出发,主要有如下的3点:
a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;
b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。
c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。
大数据能做什么?
1、海量数据快速查询(离线)
能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。
2.海量数据实时计算(实时)
在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。
3.海量数据的存储(数据量大,单个大文件)
大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)
大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。
4.数据挖掘(挖掘以前没有发现的有价值的数据)
挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。
挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)
大数据行业的应用? ??
1.常见领域
2.智慧城市
3.电信大数据
4.电商大数据
大数据行业前景(国家政策)?
2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》
2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》
2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号
2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》
2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》
2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》
2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”
总结
我国著名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。
python学习网,大量的免费python视频教程,欢迎在线学习!
关于“大数据与海量数据的区别”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!